Monday, September 27, 2010

1.4 Combinations of Functions

Arithmetic Combinations-

(f + g) (x) = f (x) + g (x)

Ex. if,
f (x)= 2 - x and g (x)= (x / 4) - 3


Then,
(f + g) (x) = (2 - x) + [(x / 4) -3]

(f - g ) (x) = (2 - x) - [(x / 4) - 3]
(f · g ) (x) = (2 - x) · [(x / 4) - 3]

(f / g ) (x) = (2 - x) / [(x / 4) - 3]


To find the value of (f + g) (x) when x = 0, plug in 0 for the x values
- add the y value for "f (x)" to the y value for "g (x)"

(f + g) (0) = (2 - 0) + [(0/4) - 3]
= (2) + (-3)
= -1

The same process is followed for subtraction, multiplication and division...

(f - g) (0) = ( 2 - 0) - [(0/4) - 3]
= (2) - (-3)
= 5

(f · g) (0) = (2 - 0) · [(0/4) - 3]
= (2) · (-3)
= -6
(f / g) (0) = (2 - 0) / [(0/4) - 3]
= (2) / (-3)
= (-2/3)



No comments:

Post a Comment